Mostly PDEs:
Type | Example | Time? | Space dependence? |
---|---|---|---|
Elliptic | electrostatics | steady | global |
Hyperbolic | sound waves | yes | local |
Parabolic | diffusion | yes | global |
Different types involve different communication:
Consider flow (e.g. of heat) in a uniform rod
$$\begin{aligned} \frac{\partial Q}{\partial t} \propto h \frac{\partial u}{\partial t} &\approx C \left[ \left( \frac{u(x-h)-u(x)}{h} \right) + \left( \frac{u(x)-u(x+h)}{h} \right) \right] \\ \frac{\partial u}{\partial t} &\approx C \left[ \frac{u(x-h)-2u(x)+u(x+h)}{h^2} \right] \rightarrow C \frac{\partial^2 u}{\partial x^2} \end{aligned}$$
Heat equation with $u(0) = u(1) = 0$ $$\frac{\partial u}{\partial t} = C \frac{\partial^2 u}{\partial x^2}$$
Spatial semi-discretization: $$\frac{\partial^2 u}{\partial x^2} \approx \frac{u(x-h)-2u(x)+u(x+h)}{h^2}$$
Yields a system of ODEs $$ \begin{align} \frac{du}{dt} & = C h^{-2} (-T) u \\ &= -C h^{-2} \begin{bmatrix} 2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{n-2} \\ u_{n-1} \end{bmatrix} \end{align}$$
Approximate PDE by ODE system (“method of lines”): $$\frac{du}{dt} = C h^{-2} T u$$ Now need a time-stepping scheme for the ODE:
Nearest neighbor interactions per step $\implies$
finite rate of numerical information propagation
for t = 1 to N
communicate boundary data ("ghost cell")
take time steps locally
end
for t = 1 to N
start boundary data sendrecv
compute new interior values
finish sendrecv
compute new boundary values
end
for t = 1 to N by B
start boundary data sendrecv (B values)
compute new interior values
finish sendrecv (B values)
compute new boundary values
end
Unstable for $\delta > O(h^2)$!
Consider 2D Poisson $$-\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f $$
$$ u_{i,j} = h^{-2} \left( 4u_{i,j}-u_{i-1,j}-u_{i+1,j}-u_{i,j-1}-u_{i,j+1} \right) $$
$$L = \left[ \begin{array}{ccc|ccc|ccc} 4 & -1 & & -1 & & & & & \\ -1 & 4 & -1 & & -1 & & & & \\ & -1 & 4 & & & -1 & & & \\ \hline -1 & & & 4 & -1 & & -1 & & \\ & -1 & & -1 & 4 & -1 & & -1 & \\ & & -1 & & -1 & 4 & & & -1 \\ \hline & & & -1 & & & 4 & -1 & \\ & & & & -1 & & -1 & 4 & -1 \\ & & & & & -1 & & -1 & 4 \end{array} \right]$$
Demmel, Applied Numerical Linear Algebra.
Method | Time | Space |
---|---|---|
Dense LU | $N^3$ | $N^2$ |
Band LU | $N^2$ | $N^{3/2}$ |
Jacobi | $N^2$ | $N$ |
Explicit inv | $N^2$ | $N^2$ |
CG | $N^{3/2}$ | $N$ |
Red-black SOR | $N^{3/2}$ | $N$ |
Sparse LU | $N^{3/2}$ | $N \log N$ |
FFT | $N \log N$ | $N$ |
Multigrid | $N$ | $N$ |
Remember: best MFlop/s $\neq$ fastest solution!