Graph Partitioning

David Bindel

10 Nov 2015
The mountain of abstraction

- Started very low-level (caches, vector units, etc)
- Up to general ideas/kernels (tiling, matrix multiply)
- Up to parallel concepts, application ideas
- Nirvana: high-level description, performance “just happens?”
Low-level frameworks and languages

- OpenMP and MPI (of course)
- Intel Thread Building Blocks (TBB)
- Global arrays
- Newer (?) parallel languages and extensions
 - Cilk++
 - UPC
 - Titanium
 - Chapel
Libraries

One thing (or a few) done fast:
- BLAS (MKL, OpenBLAS, ATLAS, etc)
- LAPACK and successors
- FFTW
- Sparse direct solvers

Key challenge: linking (esp across languages)
Framework libraries

- Many in PDE land
 - PETSc, SLEPc, TAO, etc
 - Trilinos
 - Overture
 - deal.ii
- Interface more complicated than procedure call
- Effectively defines embedded solver language

Key challenge: learning framework + build/link
Runtime frameworks

- Lots of trendy examples
 - MapReduce / Hadoop
 - Pregel, GraphLab, PowerGraph, Ligra, etc
 - Spark
- Write code to match interface desired by framework
- Promise: “Code like this, we’ll make it go fast”
 - Great when it works!
 - Sometimes not as fast as you’d hope

Key challenge: map your problem to desired form
Scripting languages and PSEs

▶ Matlab, Octave, R, Python, Julia
▶ “High productivity” vs “high performance”?
▶ Not necessarily slow!
 ▶ Speed via extensions (Cython, MWrap, etc)
 ▶ Speed via Jit (Matlab, Julia, Python Numba)
 ▶ Speed via BLAS3 calls (all of the above)
 ▶ Often some parallel support as well
▶ Performance strategies transfer
 ▶ Model and understand data access
 ▶ Profile and tune
▶ Bottlenecks may not be where you expect

Key challenge: map your problem to fit language strengths
Domain specific languages

- Classic example: SQL
- PDE domain: finite element compilers
 - Dolfin framework
 - Sundance
- Embedded languages/specializers (PyCUDA, SEJITS)

Key challenge: great opportunities from limited scope
Simulation codes

- ANSYS, ABAQUS, LS-DYNA, OpenSEES, FEAP, COMSOL, FLUENT, OpenFOAM, SPICE, Cadence, BioSPICE, ...
- Typical pattern
 - Custom language (or preprocessor) for problem input
 - Scripting language to describe analysis
 - User-defined elements/modules in compiled language
- Great for some classes of problems
- Can often be tortured into covering other types!

Key challenge: limited scope
Thinking performance

- Algorithms matter
 - But asymptotics isn’t everything
- Memory matters – start with data structures
 - Compact data structures (in cache, avoid pointer-chasing)
 - Careful choice of destructive / non-destructive updates
- Model, profile, tune, repeat
And now for something completely different.
Graph partitioning

Given:

- Graph $G = (V, E)$
- Possibly weights (W_V, W_E).
- Possibly coordinates for vertices (e.g. for meshes).

We want to partition G into k pieces such that

- Node weights are balanced across partitions.
- Weight of cut edges is minimized.

Important special case: $k = 2$.

Types of separators

- *Edge* separators: remove edges to partition
- *Node* separators: remove nodes (and adjacent edges)

Can go from one to the other (easiest if graph is degree-bounded).
Why partitioning?

- Physical network design (telephone layout, VLSI layout)
- Sparse matvec
- Preconditioners for PDE solvers
- Sparse Gaussian elimination
- Data clustering
- Image segmentation
Cost

How many partitionings are there? If \(n \) is even,

\[
\binom{n}{n/2} = \frac{n!}{((n/2)!)^2} \approx 2^n \sqrt{2/(\pi n)}.
\]

Finding the optimal one is NP-complete.

We need heuristics!
Lots of partitioning problems from “nice” meshes
 ▶ Planar meshes (maybe with regularity condition)
 ▶ k-ply meshes (works for $d > 2$)
 ▶ Nice enough \implies partition with $O(n^{1-1/d})$ edge cuts
 (Tarjan, Lipton; Miller, Teng, Thurston, Vavasis)
 ▶ Edges link nearby vertices

Get useful information from vertex density

Ignore edges (but can use them in later refinement)
Recursive coordinate bisection

Idea: Choose a cutting hyperplane parallel to a coordinate axis.

- **Pro:** Fast and simple
- **Con:** Not always great quality
Inertial bisection

Idea: Optimize cutting hyperplane based on vertex density

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]
\[\bar{r}_i = x_i - \bar{x} \]
\[I = \sum_{i=1}^{n} \left[\| r_i \|^2 I - r_i r_i^T \right] \]

Let \((\lambda_n, \mathbf{n})\) be the minimal eigenpair for the inertia tensor \(I\), and choose the hyperplane through \(\bar{x}\) with normal \(\mathbf{n}\).

- **Pro:** Still simple, more flexible than coordinate planes
- **Con:** Still restricted to hyperplanes
Random circles (Gilbert, Miller, Teng)

- Stereographic projection
- Find centerpoint (any plane is an even partition)
 In practice, use an approximation.
- Conformally map sphere, moving centerpoint to origin
- Choose great circle (at random)
- Undo stereographic projection
- Convert circle to separator

May choose best of several random great circles.
Coordinate-free methods

- Don’t always have natural coordinates
 - Example: the web graph
 - Can sometimes add coordinates (metric embedding)
- So use edge information for geometry!
Breadth-first search

- Pick a start vertex v_0
 - Might start from several different vertices
- Use BFS to label nodes by distance from v_0
 - We’ve seen this before – remember RCM?
 - Could use a different order – minimize edge cuts locally (Karypis, Kumar)
- Partition by distance from v_0
Greedy refinement

Start with a partition \(V = A \cup B \) and refine.

Gain from swapping \((a, b)\) is \(D(a) + D(b) \), where

\[
D(a) = \sum_{b' \in B} w(a, b') - \sum_{a' \in A, a' \neq a} w(a, a') \\
D(b) = \sum_{a' \in A} w(b, a') - \sum_{b' \in B, b' \neq b} w(b, b')
\]

Purely greedy strategy:
- Choose swap with most gain
- Repeat until no positive gain

Local minima are a problem.
Kernighan-Lin

In one sweep:

While no vertices marked
 Choose \((a, b)\) with greatest gain
 Update \(D(v)\) for all unmarked \(v\) as if \((a, b)\) were swapped
 Mark \(a\) and \(b\) (but don’t swap)
Find \(j\) such that swaps 1, \ldots, \(j\) yield maximal gain
Apply swaps 1, \ldots, \(j\)

Usually converges in a few (2-6) sweeps. Each sweep is \(O(N^3)\). Can be improved to \(O(|E|)\) (Fiduccia, Mattheyses).

Further improvements (Karypis, Kumar): only consider vertices on boundary, don’t complete full sweep.
Spectral partitioning

Label vertex i with $x_i = \pm 1$. We want to minimize

$$\text{edges cut} = \frac{1}{4} \sum_{(i,j) \in E} (x_i - x_j)^2$$

subject to the even partition requirement

$$\sum_i x_i = 0.$$

But this is NP hard, so we need a trick.
Spectral partitioning

Write
\[
\text{edges cut} = \frac{1}{4} \sum_{(i,j) \in E} (x_i - x_j)^2 = \frac{1}{4} \|Cx\|^2 = \frac{1}{4} x^T L x
\]

where \(C \) is the incidence matrix and \(L = C^T C \) is the graph Laplacian:

\[
C_{ij} = \begin{cases}
1, & e_j = (i, k) \\
-1, & e_j = (k, i) \\
0, & \text{otherwise},
\end{cases}
\]

\[
L_{ij} = \begin{cases}
d(i), & i = j \\
-1, & i \neq j, (i, j) \in E, \\
0, & \text{otherwise.}
\end{cases}
\]

Note that \(Ce = 0 \) (so \(Le = 0 \)), \(e = (1, 1, 1, \ldots, 1)^T \).
Now consider the \emph{relaxed} problem with $x \in \mathbb{R}^n$:

$$\text{minimize } x^T L x \text{ s.t. } x^T e = 0 \text{ and } x^T x = 1.$$

Equivalent to finding the second-smallest eigenvalue λ_2 and corresponding eigenvector x, also called the \emph{Fiedler vector}.
Partition according to sign of x_i.

How to approximate x? Use a Krylov subspace method (Lanczos)!
Expensive, but gives high-quality partitions.
Multilevel ideas

Basic idea (same will work in other contexts):
- Coarsen
- Solve coarse problem
- Interpolate (and possibly refine)

May apply recursively.
Maximal matching

One idea for coarsening: maximal matchings

- Matching of \(G = (V, E) \) is \(E_m \subset E \) with no common vertices.
- Maximal if no more edges can be added and remain matching.
- Constructed by an obvious greedy algorithm.
- Maximal matchings are non-unique; some may be preferable to others (e.g. choose heavy edges first).
Coarsening via maximal matching

- Collapse nodes connected in matching into coarse nodes
- Add all edge weights between connected coarse nodes
Software

All these use some flavor(s) of multilevel:

- METIS/ParMETIS (Kapyris)
- PARTY (U. Paderborn)
- Chaco (Sandia)
- Scotch (INRIA)
- Jostle (now commercialized)
- Zoltan (Sandia)
Is this it?

Consider partitioning for sparse matvec:

- Edge cuts \neq communication volume
- Haven’t looked at minimizing *maximum* communication volume
- Looked at communication volume – what about latencies?

Some work beyond graph partitioning (e.g. hypergraph in Zoltan).
Is this it?

Additional work on:
- Partitioning power law graphs
- Covering sets with small overlaps

Also: Classes of graphs with no small cuts (expanders)