
Beyond C/C++

David Bindel

17 Nov 2015

Current Landscape

For scientific code, at least 90%:
I Python for scripting / high-level
I Fortran or C/C++ for everything else
I Parallelism via OpenMP and MPI

Much of the remainder: accelerators
I CUDA / OpenCL / OpenAcc
I These are basically C extensions

Good: Big ecosystems, lots of reference material.
But what about fresh ideas?

Why choose what?

I Popularity – can others use/extend my code?
I Portability – will it run across platforms?
I Performance – will it run fast (portably)?
I Ecosystem – can I get libraries?

Why not C/C++

I write a lot of C/C++, but know:
I Aliasing is a tremendous pain
I No real multi-dimensional arrays
I Complex number support can be painful

Modern C++ keeps getting better...
but numerical code is still a problem

Fortran (6= F77)

I Not the language dinosaur you think it is!
I Use SciPy/NumPy? You use Fortran!
I Standard bindings for OpenMP and MPI
I Sane support for multi-dimensional arrays, complex numbers
I Relatively easy to optimize
I Coming soon to LLVM: https://t.co/LhjkdYztMu
I Since Fortran 2003: Standard way to bind with C
I Since Fortran 2008: Co-arrays (more on this later)

https://t.co/LhjkdYztMu

Wait, Python?

Big selling points:
I Not all code is performance critical!
I For performance-bound code

I Compiled extensions (Cython and predecessors)
I JIT options (Numba, PyPy)

I Easy to bind to compiled code (SWIG, f2py, Cython)
I “Batteries included”: libraries cover a lot of ground
I Often used to support Domain Specific Languages

C plus a bit

Common mode: C/C++ with extensions for extra parallelism
I Cilk+
I UPC and predecessors
I CUDA
I ISPC?

Cilk+

MIT project from 90s → Cilk Arts → Intel

C/C++ plus
I cilk_for (parallel loops)
I cilk_spawn (asynchronous function launch)
I cilk_sync (synchronize)
I Reducers (no mutex, apply reduction at sync)
I Array operations
I SIMD-enabled functions
I Work-stealing scheduler

Implementations: GCC, CLang, Intel compiler

void reducer_list_test() {
using namespace std;
cilk::reducer< cilk::op_list_append<char> >

letters_reducer;

// Build the list in parallel
cilk_for (char ch = ’a’; ch <= ’z’; ch++) {

simulated_work();
letters_reducer->push_back(ch);

}

// Reducer result as a standard STL list then output
const list<char> &letters = letters_reducer.get_value();
cout << "Letters from reducer_list:";
for (auto i = letters.begin(); i != letters.end(); i++)

cout << " " << *i;
cout << endl;

}

https://www.cilkplus.org/tutorial-cilk-plus-reducers

https://www.cilkplus.org/tutorial-cilk-plus-reducers

Big picture

I Message passing: scalable, harder to program (?)
I Shared memory: easier to program, less scalable (?)
I Global address space:

I Use shared address space (programmability)
I Distinguish local/global (performance)
I Runs on distributed or shared memory hw

Partitioned Global Address Space (PGAS)

 Private address space

 Globally shared address space

 Thread 1 Thread 2 Thread 3 Thread 4

I Partition a shared address space:
I Local addresses live on local processor
I Remote addresses live on other processors
I May also have private address spaces
I Programmer controls data placement

I Several examples: UPC, Titanium, Fortran 2008

Unified Parallel C

Unified Parallel C (UPC) is:
I Explicit parallel extension to ANSI C
I A partitioned global address space language
I Similar to C in design philosophy: concise, low-level, ...

and “enough rope to hang yourself”
I Based on ideas from Split-C, AC, PCP

References

I http://upc.lbl.gov
I http://upc.gwu.edu

Based on slides by Kathy Yelick (UC Berkeley),
in turn based on slides by Tarek El-Ghazawi (GWU)

Execution model

I THREADS parallel threads, MYTHREAD is local index
I Number of threads can be specified at compile or run-time
I Synchronization primitives (barriers, locks)
I Parallel iteration primitives (forall)
I Parallel memory access / memory management
I Parallel library routines

Hello world

#include <upc.h> /* Required for UPC extensions */
#include <stdio.h>

int main()
{

printf("Hello from %d of %d\n",
MYTHREAD, THREADS);

}

Shared variables

shared int ours;
int mine;

I Normal variables allocated in private memory per thread
I Shared variables allocated once, on thread 0
I Shared variables cannot have dynamic lifetime
I Shared variable access is more expensive

Shared arrays

shared int x[THREADS]; /* 1 per thread */
shared double y[3*THREADS]; /* 3 per thread */
shared int z[10]; /* Varies */

I Shared array elements have affinity (where they live)
I Default layout is cyclic

I e.g. y[i] has affinity to thread i % THREADS

Hello world++ = π via Monte Carlo

Write
π = 4

Area of unit circle quadrant
Area of unit square

If (X ,Y) are chosen uniformly at random on [0, 1]2, then

π/4 = P{X 2 + Y 2 < 1}

Monte Carlo calculation of π: sample points from the square and
compute fraction that fall inside circle.

π in C

int main()
{

int i, hits = 0, trials = 1000000;
srand(17); /* Seed random number generator */
for (i = 0; i < trials; ++i)

hits += trial_in_disk();
printf("Pi approx %g\n", 4.0*hits/trials);

}

π in UPC, Version 1

shared int all_hits[THREADS];
int main() {

int i, hits = 0, tot = 0, trials = 1000000;
srand(1+MYTHREAD*17);
for (i = 0; i < trials; ++i)

hits += trial_in_disk();
all_hits[MYTHREAD] = hits;
upc_barrier;
if (MYTHREAD == 0) {

for (i = 0; i < THREADS; ++i)
tot += all_hits[i];

printf("Pi approx %g\n", 4.0*tot/trials/THREADS);
}

}

Synchronization

I Barriers: upc_barrier
I Split-phase barriers: upc_notify and upc_wait

upc_notify;
Do some independent work
upc_wait;

I Locks (to protect critical sections)

Locks

Locks are dynamically allocated objects of type upc_lock_t:

upc_lock_t* lock = upc_all_lock_alloc();
upc_lock(lock); /* Get lock */
upc_unlock(lock); /* Release lock */
upc_lock_free(lock); /* Free */

π in UPC, Version 2

shared int tot;
int main() {

int i, hits = 0, trials = 1000000;
upc_lock_t* tot_lock = upc_all_lock_alloc();
srand(1+MYTHREAD*17);
for (i = 0; i < trials; ++i)

hits += trial_in_disk();
upc_lock(tot_lock);
tot += hits;
upc_unlock(tot_lock);
upc_barrier;
if (MYTHREAD == 0) { upc_lock_free(tot_lock); print ...}

}

Collectives

UPC also has collective operations (typical list)

#include <bupc_collectivev.h>
int main() {

int i, hits = 0, trials = 1000000;
srand(1+MYTHREAD*17);
for (i = 0; i < trials; ++i)

hits += trial_in_disk();
hits = bupc_allv_reduce(int, hits, 0, UPC_ADD);
if (MYTHREAD == 0) printf(...);

}

Loop parallelism with upc_forall

UPC adds a special type of extended for loop:

upc_forall(init; test; update; affinity)
statement;

I Assume no dependencies across threads
I Just run iterations that match affinity expression

I Integer: affinity % THREADS == MYTHREAD
I Pointer: upc_threadof(affinity) == MYTHREAD

I Really syntactic sugar (could do this with for)

Example

Note that x, y, and z all have the same layout.

shared double x[N], y[N], z[N];
int main() {

int i;
upc_forall(i=0; i < N; ++i; i)

z[i] = x[i] + y[i];
}

Array layouts

I Sometimes we don’t want cyclic layout
(think nearest neighbor stencil...)

I UPC provides layout specifiers to allow block cyclic layout
I Block sizes expressions must be compile time constant (except

THREADS)
I Element i has affinity with (i / blocksize) % THREADS
I In higher dimensions, affinity determined by linearized index

Array layouts

Examples:

shared double a[N]; /* Block cyclic */
shared[*] double a[N]; /* Blocks of N/THREADS */
shared[] double a[N]; /* All elements on thread 0 */
shared[M] double a[N]; /* Block cyclic, block size M */
shared[M1][M2] double a[N][M1][M2]; /* Blocks of M1*M2 */

1D Jacobi Poisson example

shared[*] double u_old[N], u[N], f[N]; /* Block layout */
void jacobi_sweeps(int nsweeps) {

int i, it;
upc_barrier;
for (it = 0; it < nsweeps; ++it) {

upc_forall(i=1; i < N-1; ++i; &(u[i]))
u[i] = (u_old[i-1] + u_old[i+1] - h*h*f[i])/2;

upc_barrier;
upc_forall(i=0; i < N; ++i; &(u[i]))

u_old[i] = u[i];
upc_barrier;

}
}

1D Jacobi pros and cons

Good points about Jacobi example:
I Simple code (1 slide!)
I Block layout minimizes communication

Bad points:
I Shared array access is relatively slow
I Two barriers per pass

1D Jacobi: take 2

shared double ubound[2][THREADS]; /* For ghost cells*/
double uold[N_PER+2], uloc[N_PER+2], floc[N_PER+2];
void jacobi_sweep(double h2) {

int i;
if (MYTHREAD>0) ubound[1][MYTHREAD-1]=uold[1];
if (MYTHREAD<THREADS) ubound[0][MYTHREAD+1]=uold[N_PER];
upc_barrier;
uold[0] = ubound[0][MYTHREAD];
uold[N_PER+1] = ubound[1][MYTHREAD];
for (i = 1; i < N_PER+1; ++i)

uloc[i] = (uold[i-1] + uold[i+1] - h2*floc[i])/2;
for (i = 1; i < N_PER+1; ++i)

uold[i] = uloc[i];
}

1D Jacobi: take 3

void jacobi_sweep(double h2) {
int i;
if (MYTHREAD>0) ubound[1][MYTHREAD-1]=uold[1];
if (MYTHREAD<THREADS) ubound[0][MYTHREAD+1]=uold[N_PER];
upc_notify; /******* Start split barrier *******/
for (i = 2; i < N_PER; ++i)

uloc[i] = (uold[i-1] + uold[i+1] - h2*floc[i])/2;
upc_wait; /******* End split barrier *******/
uold[0] = ubound[0][MYTHREAD];
uold[N_PER+1] = ubound[1][MYTHREAD];
for (i = 1; i < N_PER+1; i += N_PER)

uloc[i] = (uold[i-1] + uold[i+1] - h2*floc[i])/2;
for (i = 1; i < N_PER+1; ++i) uold[i] = uloc[i];

}

Sharing pointers

Have pointers to global address space. Either pointer or referenced
data might be shared:

int* p; /* Ordinary pointer */
shared int* p; /* Local pointer to shared data */
shared int* shared p; /* Shared pointer to shared data */
int* shared p; /* Legal, but bad idea */

Pointers to shared are larger and slower than standard pointers.

UPC pointers

Pointers to shared objects have three fields:
I Thread number
I Local address of block
I Phase (position in block)

Access with upc_threadof and upc_phaseof;
go to start with upc_resetphase.

Dynamic allocation

I Can dynamically allocate shared memory
I Functions can be collective or not
I Collective functions must be called by every thread,

return same value at all threads

Global allocation

shared void*
upc_global_alloc(size_t nblocks, size_t nbytes);

I Non-collective – just called at one thread
I Layout of shared [nbytes] char[nblocks * nbytes]

Collective global allocation

shared void*
upc_all_alloc(size_t nblocks, size_t nbytes);

I Collective – everyone calls, everyone receives same pointer
I Layout of shared [nbytes] char[nblocks * nbytes]

UPC free

void upc_free(shared void* p);

I Frees dynamically allocated shared memory
I Not collective

Example: Shared integer stack

Shared linked-list representation of a stack (think work queues).
All data will be kept at thread 0.

typedef struct list_t {
int x;
shared struct list_t* next;

} list_t;

shared struct list_t* shared head;
upc_lock_t* list_lock;

Example: Shared integer stack

void push(int x) {
shared list_t* item =

upc_global_alloc(1, sizeof(list_t));
upc_lock(list_lock);
item->x = x;
item->next = head;
head = item;
upc_unlock(list_lock);

}

Example: Shared integer stack

int pop(int* x) {
shared list_t* item;
upc_lock(list_lock);
if (head == NULL) {

upc_unlock(list_lock);
return -1;

}
item = head;
head = head->next;
*x = item->x;
upc_free(item);
upc_unlock(list_lock);
return 0;

}

Memory consistency

UPC has two types of accesses:
I Strict: will always appear in order (sequential consistency)
I Relaxed: may appear out of order to other threads

Several ways to specify:
I Include <upc_relaxed.h>
I Add strict or relaxed as type qualifier
I Use pragmas

The upc_fence is a strict null reference – ensures shared references
issued earlier are complete.

Performance

People won’t use it if it’s too slow! So:
I Maximize single-node performance (can link with tuned

libraries, build on fast compilers)
I Use fast communication (GASNet layer provides fast one-sided

communication for Berkeley UPC)
I Manage the details intelligently (language provides access to

some low-level details, such as memory layout).
Case studies as part of UPC tutorial slides. With care, can
sometimes get better performance than MPI!

But performance tuning is still nontrivial... not a magic bullet.

