Final thoughts

David Bindel

23 Nov 2015
Logistics

Reminder: My last lecture!
Dec 3 (or 5): GPU lecture
 Dec 16: Project reports due
 Dec 23: Fall 15 grade deadline
Goal: understand performance!

- *Do* give a description of your problem.
- *Do* describe performance analysis, which might include
 - Serial tuning and reorganizations
 - Strong and weak scaling experiment (speedup plots!)
 - Profiling of communication and computation
 - Tuning of parallelism (communication, synchronization, etc)
 - Comparison to analytical models
 - Comparisons between alternate organizations
- *Do* tell me how this work might continue given more time.
- *Don’t* make me read a ton of code.
- *Don’t* ask for an extension. This is due 12/16.
Recap and Overview
Goals for Scientific Codes

Right enough, fast enough.
Recall: Goals for the Class (from Lecture 1)

- Reason about code performance
 - Many factors: hardware, software, algorithms
 - Want simple, “good enough” models
- Read/judge HPC literature
- Apply model numerical HPC patterns
- Tune existing codes for modern HW
- Apply good software practices
Hardware ideas

These things matter:
- ILP: Pipelining, concurrent execution, and vectorization
- Memory hierarchy and the cost of cache misses
- Communication costs (latency and bandwidth)
- Synchronization overheads
Model ideas

Essentially, all models are wrong, but some are useful.
– George E. P. Box

- Use simple performance models for guidance
- Fit the parameters to empirical experiment
Numerical ideas

... thinking about high-performance numerics often involves:

▶ Tiling and blocking algorithms; building atop the BLAS
▶ Ideas of sparsity and locality
▶ Graph partitioning and communication / computation ratios
▶ Information propagation, deferred communication, ghost cells
▶ Big picture view of sparse and direct iterative solvers
▶ Some multilevel ideas
▶ And a few other numerical methods (FMM, MC, MD) and associated programming patterns
Improving performance

- Zeroth steps
 - Working code (and test cases) first
 - Be smart about trading your time for CPU time!

- First steps
 - Use good compilers (if you have access – Intel is good)
 - Use flags intelligently (-O3, maybe others)
 - Use libraries someone else has tuned!

- Second steps
 - Use a profiler
 - Learn some timing routines (system-dependent)
 - Find the bottleneck!

- Third steps
 - Tune the data layout (and algorithms) for cache locality
 - Put in context of computer architecture
 - Now tune
 - Maybe with some automation (Spiral, FLAME, ATLAS, OSKI)
Parallel environments

- **MPI**
 - Portable to many implementations
 - Giant legacy code base
 - Does keep evolving (e.g. RDMA support)

- **OpenMP**
 - Parallelize C, Fortran codes with simple changes
 - ... but may need more invasive changes to go fast

- **Cilk Plus, Intel Thread Building Blocks, ...**
 - Threading alternatives to OpenMP

- **CUDA, OpenCL, etc**
 - Highly data-parallel kernels (e.g. for GPU)

- **GAS systems: Fortran co-arrays, UPC, Titanium, Chapel**
 - Shared-memory-like programs
 - Explicitly acknowledge of different types of memory
Libraries and frameworks

- **Dense LA:** LAPACK and BLAS (ATLAS, Goto, Veclib, MKL, AMD Performance Library)
- **Sparse direct:** Elemental, Pardiso (in MKL), UMFPACK (in MATLAB), WSMP, SuperLU, TAUCS, DSCPACK, MUMPS, ...
- **FFT:** FFTW
- **Graph partitioning:** METIS, ParMETIS, SCOTCH, Zoltan, ...
- **Other:** deal.ii (FEM), SUNDIALS (ODEs/DAEs), SLICOT (control), Triangle (meshing), ...
- **Frameworks:** PETSc/Trilinos
 - Gigantic, a pain to compile... but does a lot
 - Good starting places for ideas, library bindings!
- **Collections:** Netlib (classic numerical software), ACTS (reviews of parallel code)
- **MATLAB, Anaconda Python distro, etc.** add value in part by selecting and pre-building interoperable libraries
... because we don’t want to spend all our lives debugging C memory errors, it helps to make judicious use of other languages:

- Many options: Python, Ruby, Lua, Julia, R, ...
- Wrappers help: SWIG, tolua, Boost/Python, Cython, etc.
- Scripts are great for
 - Prototyping
 - Problem setup
 - High-level logic
 - User interfaces
 - Testing frameworks
 - Program generation tasks
 - ...

- Worry about performance at the bottlenecks!
Read! Among other things:

- “Five recommended practices for computational scientists who write software” (Kelley, Hook, and Sanders in *Computing in Science and Engineering*, 9/09)
- “Barely sufficient software engineering: 10 practices to improve your CSE software” (Heroux and Willenbring)
- “15 years of reproducible research in computational harmonic analysis” (Donoho et al)
 - Daniel Lemire has an interesting rebuttal.
- Follow-up: Good Enough Practices for Scientific Computing
Looking back, looking forward
Today: Hardware

- My phone is a multicore machine
- Shared memory programming hasn’t disappeared
- 128 processors + a terabyte of memory = 1 beefy box
- Accelerators are everywhere
- Caches keep getting more important
- A modest class cluster has nearly 1000 processors
- Getting a significant fraction of peak is hard
- Statistical computations (machine learning) burn lots of cycles
Today: Software

- Lots is still C/C++/Fortran
 - These are evolving languages!
 - Most new languages don’t go far...
- Increased emphasis on high-level (e.g. Python)
 - High performance in specific domains
 - Domain-specific specializations
 - JIT and on-the-fly optimization are commonplace
- High productivity matters along with high performances
- We still suffer some “accidental complexities”
 - Think struct-of-arrays vs array-of- structs transformation
Today: Applications

- Still lots of “traditional” HPC computations
 - Large-scale optimization
 - PDE solves
 - Engineering simulation
- Graph applications?
 - Different properties from PDEs
 - Similar applications
- Also lots of stats / ML computations
 - Often more opportunities for parallelism
 - Often more data, less accuracy – I/O becomes the key
 - Lots of work on frameworks for these problems
 - Closer to traditional HPC over time...
- “Big data” and DB ideas
 - Lots of relatively modest computations over lots of data
 - Still rather different community from lots of HPC
Where we’re heading

“If you were plowing a field, which would you rather use: Two strong oxen or 1024 chickens?”

– Seymour Cray

- Done with scaling up frequency, pipeline length
- Current hardware: multicore and manycore (GPU and Phi)
 - Often specialized parallelism — go, chickens!
 - We’re back to not-so-short vectors
- Where current hardware lives
 - Often in clusters, maybe “in the cloud”
 - More embedded computing, too!
- Straight line prediction: double core counts every 18 months
- Real question is still how we’ll use these cores!
- Ever-worse issues: deep memory, communication costs
Where we’re heading

- Many dimensions of “performance”
 1. Time to execute a program or routine
 2. Energy to execute a program or routine (esp. on battery)
 3. Total cost of ownership / computation?
 4. Time to write and debug programs

- Scientific computing has been driven by speed

- Other measures of performance also have influence
Where we’re heading

- Top 500 has stayed much the same for several years!
- DOE still says “exascale” pretty often
 - And nobody knows how to use it
- Next Xeon Phi: independent board (vs co-processor)
 - How long with the co-processors?
- Cloud vendors still care more about high throughput, but...
 - Accelerated cloud instances a viable path to some HPC
- Languages advance slowly, but
 - New LLVM Fortran is exciting
 - Multidimensional array functionality being considered by ISO/C++ standard committee
 - Other goodies planned for C++17 (better atomics)
Next steps

- Next offering: likely not S18 – S19? S20?
- Between now and then: how to keep the ball rolling?
 - Keep totient a useful *educational* resource?
 - Continue building relevant skills?
- One idea: two (largely student-guided) activities
 - *Software carpentry workshops* (per semester)
 - *Scientific software meetup* (biweekly)
 - Drop me a line if you’re interested in either...
Given enough time

- Serious parallel programming in Cilk++, UPC, etc
- Parallel I/O issues
- Code generation and specialization
- Visualization
- “Big data” processing and frameworks
- Kokkos, TBB, other frameworks
- Reproducibility
- Multigrid
- Tree codes
- Particle codes
Your Turn