A High-Level Intro to CUDA

CS5220 Fall 2015

What is CUDA?

e Compute Unified Device Architecture
o released in 2007
o GPU Computing
e Extension of C/C++
o requires NVCC (CUDA Compiler) and NVIDIA Graphics Card

Historical Background

e In the early days, no “GPUs”. Expensive computers had tiny math co-

processors.
o intersecting and transforming vectors, basic physics, textures, etc
o The earliest games took advantage of these co-processors.
e Hardware changes!
o Numerous vendors at first
o now only NVIDIA and AMD (ATI)
e Not surprisingly, graphics cards were a great way to compute!
o Simulations, Machine Learning, Signal Processing, etc etc

e Nowadays, GPUs are often the most expensive part of a computer

The Difference Between (Modern) CPUs and GPUs

e Starting Question: When would | use a CPU and when would | use a GPU?

e So farin this class, we've been using ~24 threads (~240 with offloading)
o Need to find much more parallelism per GPU!
o Think thousands of threads...

http://www.youtube.com/watch?v=-P28LKWTzrI

Current CPU Architecture

Current GPU Architecture

PCI Express 3.0 Host Interface

J8]j0u0n Kiowsy

J13]j013u0 Arowap

o

—— —— —— — -

e — e — =

—— — — —— — -

— i — — — — =

SMX

SMX

SMX

SMX

SMX

SMX

| | J9j053u09 Kiowap

19]jo3u0) Aloway

J9]j053u0) Klowsap

Let’s look a bit closer...

SMX

PolyMorph Engine 2.0

Vertex Fetch | Tessellator Viewport Transform

Attribute Setup Stream Output

Dispaich Unit DispaichUnif Dispatch Unit Dispatch Unit Dispatch Unit DispatchUnit Dispatch Unit | [Dispatch Unit
+ &+ *+ + + B 5+
Register File (65,536 x 32-bit)

Tex Tex Tex Tex Tex Tex Tex Tex

Tex Tex Tex Tex Tex Tex Tex Tex

GPU Architecture

e Major Simplification: you can think of a GPU as a big set of vector (SIMD)

units.
o Programming with this model in mind won’t give you the best performance, but it's a start
e A better view is thinking of a GPU as a set of multithreaded, multicore vector
units.
o see “Benchmarking GPUs for Dense Linear Algebra, Volkov and Demmel, 2008

e These models abstract the architecture in various ways!

Side Discussion

e \What are the differences between a GPU and a Xeon Phi (the latter of which
we’ve been using?)

Heterogeneous Parallel Computing

Host: the CPU and its memory the GPU and its memory

Advantages of Heterogeneous Processing

e Use both the CPU and GPU

e You get the best of both worlds!
o Do serial parts fast with CPU, do parallel parts fast with GPU
e How does this extend to larger computers?

o Many of the fastest supercomputers are essentially sets of CPUs with attached GPU
Accelerators, a la Totient (more unusual back in the day)

What is CUDA?

e An API (Application Program Interface) for general Heterogeneous Computing
o before CUDA, one had to repurpose graphics-specific APls for non-graphics work
o Major headache

The Crux of CUDA

e Work on the host (CPU), copy data to the device’s memory (GPU RAM),
where it will work on that data

e Device then copies data back to the host

e As with CPU programming, communication and synchronization are

expensive!

o Even more so with the GPU (information has to go through PCI-E bus)
o You do not want to be constantly copying over small pieces of work.

A General Outline

do_something _on_host();

kernel<<<nBlk, nThd>>>(args);

cudabDeviceSynchronize();

\A / \A A/

do_something else on _host(); Parallel

Example: Vector Addition

void VecAdd(const float* A, const float* B, float* C, int N) {

int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid < N) C[tid] = A[tid] + B[tid];

CUDA Features: What you can do

e Standard Math Functions (think cmath.h)
o trig, sqrt, pow, exp, etc
e Atomic operations
o atomicAdd, atomicMin, etc
o As with before, much faster than locks
e Memory
o cudaMalloc, cudaFree
o cudaMemcpy
e Graphics

o Not in the scope of this class, lots of graphics stuff

What you can't do:

e In Vanilla CUDA, not much else
o no /O, no recursion, limited object support, etc

e This is why we need heterogeneity.

CUDA Function Declarations

__Qglobal

o Kernel function (must return void)
o Executed in parallel on device

__host__

o Called and executed on host
__device

o Called and executed on device

Example: Vector Addition

void VecAdd(const float* A, const float* B, float* C, int N) {

int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid < N) C[tid] = A[tid] + B[tid];

Vector Addition Cont.

void main() {
float *h_A, *h_B, *h _C;
float *d_A, *d_B, *d_C;

int size = N * sizeof(float);

cudaMalloc((void**)&d A, size);

cudaMalloc((void**)&d B, size);
cudaMalloc((void**)&d C, size);

= (int*)malloc(size); random_ints(s> N);
= (int*)malloc(size); random_ints(s> N);
(int*)malloc(size);

Vector Addition Cont.

cudaMemcpy(d_A, , size, cudaMemcpyHostToDevice);

cudaMemcpy(d_B, , size, cudaMemcpyHostToDevice);

int Nblocks= (N + 255)/256;
int Nthreads = 256;
VecAdd<<<Nblocks, Nthreads>>>(d_A, d_B, d_C, N);

cudaMemcpy (, d_C, size, cudaMemcpyDeviceToHost);

free(h_A); free(h B); free(h C);
cudaFree(d_A); cudaFree(d B); cudaFree(d C);

CUDA Thread Organization

e CUDA Kernel call:
VecAdd<<<Nblocks, Nthreads>>>(d_A, d_B, d_C, N);
e When a CUDA Kernel is launched, we specify the # of thread blocks and
of threads per block
o The Nblocks and Nthreads variables, respectively

e Nblocks * Nthreads = number of threads
o Tuning parameters.
o What’s a good size for Nblocks ?
o Max threads per block = 1024

CUDA Thread Organization: More about Blocking

e Each thread in a thread block shares a fast piece of shared memory

o This makes communicating and synchronizing within a thread block fast!
o Not the case for threads in different blocks

e Ideally, thread blocks do completely independent work

e Thread blocks encapsulate many computational patterns
o think MatMul blocking, Domain Decomposition, etc

CUDA Thread Organization: More about Blocking

e Each block is further subdivided into warps, which usually contain 32 threads.
o Threads in each warp execute in a SIMD manner (together, on contiguous memory)
o Gives us some intuition for good block sizes.

e Just to reiterate
o Threads are first divided into blocks
o Each block is then divided into multiple warps
o Threads in a warp execute in a SIMD manner
m can get a little confusing!

CUDA Memory Model

CUDA Thread Organization Cont.

e What's the maximum number of threads one can ask for?
o Number of SMXs * Number of Warps per SMX * 32
o maximum != optimal

CUDA Synchronization

e \We've already mentioned atomic operations

e CUDA supports locking

e Using implicit synchronization from kernel calls
e CUDA functions

o syncthreads() ...block level sync
o cudaDeviceSynchronize()

Libraries

e Basic Libraries
o CcuBLAS
o cuDPP (data parallel primitives i.e. reduction)
o and more
e Many high-performance tools built on top of these basic libraries
MAGMA (LAPACK)
FFmpeg
CuFFT
and more

O O O O

tejilllgle

e Nvidia Visual Profiler is NVIDIA’s CUDA profiler

o lots of effort put into GUI and user friendliness

e Alternatives
o nvprof is a command line profiler

EEE
& *dct8x8.vp 2 = O || g Properties i3 | @ Detail Graphs

162 ms CUDAkernel1DCT(float*, int, int, int)

[= Process: 11119 Blaina At
[=] Thread: -1494415584

Runtime API HE) Start 161.329 ms

Driver APl Duration 106.132 ps
[=l [0] GeForce GTX 480 Grid Size [64,64,1]
[=] Context 1 (CUDA) Block Size [881]
T MemCpy (HtoD) Registers/Thread 14

SF MemCpy (DtoH) emcpy DtoH [sync! Shared Memory/Block 512 bytes
¥ MemCpy (DtoD)

[P—
=l compute CUDAkemelQua... CUDAkemel1IDCT(float*, int...

T 0.7% [101] CUD Global Load Efficiency n/a
T 0:3% [10] cu[),qk-___ Global Store Efficiency 100%

T 0.0% [2] CUDAke... CUDAkemelQua... DRAM Utilization 10.9% (18.4

T 0.0% [1] CUDAke... Instruction
T 0.0% [1] CUDAke... Branch Divergence Overhe; 0%
T 0.0% [1] CUDAke... Total Replay Overhead & 51%
¥ 0.0% [1] cUDAke... Shared Memory Replay Ove 0%
¥ 0.0% [1] CUDAke...
e Global Memory Replay Ove & 51%
Stream 1 [lemcpy Dic Lighal £ eche Repay Oven 10S

Local Cache Replay Overhe 0%
- Occupancy

Memory

<
W& Analysis 2 | I§ Details| B Console | B Settings

Analysis Results
| B ResetAll | H Analyze All| Y

High Branch Divergence Overhead [35.1% avg, for kernels accounting for 1.9% of compute]
Timeline : Divergent branches are causing significant instruction issue overhead.

High Instruction Replay Overhead [46.6% avg, for kernels accounting for 39.1% of compute]

Multiprocessor y i i i i P
A combination of global, shared, and local memory replays are causing significant instruction issue overhead. More...

Kernel Memory : - High Global Memory Instruction Replay Overhead [45.9% avg, for kernels accounting for 39.1% of compute]
~ Non-coalesced global memory accesses are causing significant instruction issue overhead. More...

Kernel Instruction

Tuning for Performance

e Many things that we learned about writing good parallel code for CPUs apply

here!
o Program for maximal locality, minimal stride, and sparse synchronization.
o Blocking, Buffering, etc
e More generally
GPU Architecture
Minimizing Communication and Synchronization
Finding optimal block sizes
Using fast libraries

e \What if we wanted to optimize Shallow Waters solver in PA27?

O O O O

Note: Thrust

e Designed to be the “cstdlib.n” of CUDA
e Incredibly useful library that abstracts away many tedious aspects of CUDA
e Greatly increases programmer productivity

Note: What if | don’t want to program in C/C++7?

e Answer: PyCUDA, jCUDA, some others provide CUDA integration for as well

o Not as mature as C/C++ versions, some libraries not supported
e The newest version of MATLAB also supports CUDA
e Fortran
e There is always a tradeoff...

Recent Developments in CUDA

e Checkout CUDA Developer Zone
e Lots of cool stuff

Alternatives

e OpenCL is managed by the Khronos Group and is the open-source answer to
CUDA

e Performance wise, quite similar, but not as mature and not as many nice
features

e Others
o DirectCompute (MS)
o Brook+ (Stanford/AMD)

Credit

CS267 (Berkeley)
CS5220 Lec Slides from last class iteration

Mythbusters

