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What is CUDA?
● Compute Unified Device Architecture

○ released in 2007
○ GPU Computing

● Extension of C/C++
○ requires NVCC (CUDA Compiler) and NVIDIA Graphics Card



Historical Background
● In the early days, no “GPUs”. Expensive computers had tiny math co-

processors. 
○ intersecting and transforming vectors, basic physics, textures, etc
○ The earliest games took advantage of these co-processors.

● Hardware changes!
○ Numerous vendors at first
○ now only NVIDIA and AMD (ATI)

● Not surprisingly, graphics cards were a great way to compute! 
○ Simulations, Machine Learning, Signal Processing, etc etc

● Nowadays, GPUs are often the most expensive part of a computer



The Difference Between (Modern) CPUs and GPUs
● Starting Question: When would I use a CPU and when would I use a GPU?
● So far in this class, we’ve been using ~24 threads (~240 with offloading)

○ Need to find much more parallelism per GPU!
○ Think thousands of threads...



http://www.youtube.com/watch?v=-P28LKWTzrI


Current CPU Architecture



Current GPU Architecture



Let’s look a bit closer...





GPU Architecture
● Major Simplification: you can think of a GPU as a big set of vector (SIMD) 

units. 
○ Programming with this model in mind won’t give you the best performance, but it’s a start

● A better view is thinking of a GPU as a set of multithreaded, multicore vector 
units. 

○ see “Benchmarking GPUs for Dense Linear Algebra, Volkov and Demmel, 2008”

● These models abstract the architecture in various ways!



Side Discussion
● What are the differences between a GPU and a Xeon Phi (the latter of which 

we’ve been using?)



Heterogeneous Parallel Computing

Host: the CPU and its memory Device: the GPU and its memory



Advantages of Heterogeneous Processing
● Use both the CPU and GPU
● You get the best of both worlds! 

○ Do serial parts fast with CPU, do parallel parts fast with GPU

● How does this extend to larger computers? 
○ Many of the fastest supercomputers are essentially sets of CPUs with attached GPU 

Accelerators, a la Totient (more unusual back in the day)



What is CUDA?
● An API (Application Program Interface) for general Heterogeneous Computing 

○ before CUDA, one had to repurpose graphics-specific APIs for non-graphics work
○ Major headache



The Crux of CUDA
● Work on the host (CPU), copy data to the device’s memory (GPU RAM), 

where it will work on that data
● Device then copies data back to the host
● As with CPU programming, communication and synchronization are 

expensive! 
○ Even more so with the GPU (information has to go through PCI-E bus)
○ You do not want to be constantly copying over small pieces of work.



do_something_on_host();

kernel<<<nBlk, nThd>>>(args);

cudaDeviceSynchronize();

do_something_else_on_host();

…

Parallel

A General Outline  



Example: Vector Addition

 __global__ void VecAdd(const float* A, const float* B, float* C, int N) {

     int tid = blockDim.x * blockIdx.x + threadIdx.x;

     if (tid < N) C[tid] = A[tid] + B[tid];

 }



CUDA Features: What you can do
● Standard Math Functions (think cmath.h)

○ trig, sqrt, pow, exp, etc

● Atomic operations
○ atomicAdd, atomicMin, etc
○ As with before, much faster than locks

● Memory 
○ cudaMalloc, cudaFree
○ cudaMemcpy

● Graphics
○ Not in the scope of this class, lots of graphics stuff



What you can’t do: 
● In Vanilla CUDA, not much else

○ no I/O, no recursion, limited object support, etc

● This is why we need heterogeneity. 



CUDA Function Declarations
__global__
◦ Kernel function (must return void)
◦ Executed in parallel on device

__host__
◦ Called and executed on host

__device__
◦ Called and executed on device

 



Example: Vector Addition

 __global__ void VecAdd(const float* A, const float* B, float* C, int N) {

     int tid = blockDim.x * blockIdx.x + threadIdx.x;

     if (tid < N) C[tid] = A[tid] + B[tid];

 }



 void main() {

     float *h_A, *h_B, *h_C; // host copies of a, b, c 

     float *d_A, *d_B, *d_C; // device copies of a, b, c

     int size = N * sizeof(float);

     // Alloc space for device copies of a, b, c 

     cudaMalloc((void**)&d_A, size);

     cudaMalloc((void**)&d_B, size);

     cudaMalloc((void**)&d_C, size);

     // Alloc space for host copies of a, b, c and setup input values

     h_A = (int*)malloc(size); random_ints(h_A, N); 

     h_B = (int*)malloc(size); random_ints(h_B, N); 

     h_C = (int*)malloc(size); 

Vector Addition Cont. 



Vector Addition Cont. 
     // Copy inputs to device 

     cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

     cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

     // Launch VecAdd() kernel on GPU

     int Nblocks= (N + 255)/256; 

 int Nthreads = 256;

     VecAdd<<<Nblocks, Nthreads>>>(d_A, d_B, d_C, N); //←---- Note the <<<blocksPerGrid, 256>>> 

 

     // Copy result back to host 

     cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost); 

     // Cleanup 

     free(h_A); free(h_B); free(h_C); 

     cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); 



CUDA Thread Organization

● CUDA Kernel call:
VecAdd<<<Nblocks, Nthreads>>>(d_A, d_B, d_C, N);

● When a CUDA Kernel is launched, we specify the # of thread blocks and 
# of threads per block
○ The Nblocks and Nthreads variables, respectively

● Nblocks * Nthreads = number of threads
○ Tuning parameters.
○ What’s a good size for Nblocks ?
○ Max threads per block = 1024



CUDA Thread Organization: More about Blocking
● Each thread in a thread block shares a fast piece of shared memory 

○ This makes communicating and synchronizing within a thread block fast!
○ Not the case for threads in different blocks

● Ideally, thread blocks do completely independent work 
● Thread blocks encapsulate many computational patterns

○ think MatMul blocking, Domain Decomposition, etc



CUDA Thread Organization: More about Blocking
● Each block is further subdivided into warps, which usually contain 32 threads. 

○ Threads in each warp execute in a SIMD manner (together, on contiguous memory)
○ Gives us some intuition for good block sizes. 

● Just to reiterate
○ Threads are first divided into blocks
○ Each block is then divided into multiple warps
○ Threads in a warp execute in a SIMD manner 

■ can get a little confusing!



CUDA Memory Model 



CUDA Thread Organization Cont. 
● What’s the maximum number of threads one can ask for?

○ Number of SMXs * Number of Warps per SMX * 32
○ maximum != optimal



CUDA Synchronization
● We’ve already mentioned atomic operations 
● CUDA supports locking
● Using implicit synchronization from kernel calls
● CUDA functions

○ syncthreads() ...block level sync
○ cudaDeviceSynchronize()



Libraries
● Basic Libraries

○ cuBLAS
○ cuDPP (data parallel primitives i.e. reduction)
○ and more

● Many high-performance tools built on top of these basic libraries
○ MAGMA (LAPACK)
○ FFmpeg
○ cuFFT
○ and more



Profiling
● Nvidia Visual Profiler is NVIDIA’s CUDA profiler

○ lots of effort put into GUI and user friendliness

● Alternatives
○ nvprof is a command line profiler





Tuning for Performance
● Many things that we learned about writing good parallel code for CPUs apply 

here!
○ Program for maximal locality, minimal stride, and sparse synchronization. 
○ Blocking, Buffering, etc

● More generally
○ GPU Architecture
○ Minimizing Communication and Synchronization
○ Finding optimal block sizes
○ Using fast libraries

● What if we wanted to optimize Shallow Waters solver in PA2?



Note: Thrust 
● Designed to be the “cstdlib.h” of CUDA
● Incredibly useful library that abstracts away many tedious aspects of CUDA
● Greatly increases programmer productivity 



Note: What if I don’t want to program in C/C++?
● Answer: PyCUDA, jCUDA, some others provide CUDA integration for as well

○ Not as mature as C/C++ versions, some libraries not supported

● The newest version of MATLAB also supports CUDA
● Fortran
● There is always a tradeoff… 



Recent Developments in CUDA
● Checkout CUDA Developer Zone
● Lots of cool stuff



Alternatives
● OpenCL is managed by the Khronos Group and is the open-source answer to 

CUDA
● Performance wise, quite similar, but not as mature and not as many nice 

features
● Others

○ DirectCompute (MS)
○ Brook+ (Stanford/AMD)
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