
Graph Partitioning

David Bindel

10 Nov 2015

The mountain of abstraction

I Started very low-level (caches, vector units, etc)
I Up to general ideas/kernels (tiling, matrix multiply)
I Up to parallel concepts, application ideas
I Nirvana: high-level description, performance “just happens?”

Low-level frameworks and languages

I OpenMP and MPI (of course)
I Intel Thread Building Blocks (TBB)
I Global arrays
I Newer (?) parallel languages and extensions

I Cilk++
I UPC
I Titanium
I Chapel

Libraries

One thing (or a few) done fast:
I BLAS (MKL, OpenBLAS, ATLAS, etc)
I LAPACK and successors
I FFTW
I Sparse direct solvers

Key challenge: linking (esp across languages)

Framework libraries

I Many in PDE land
I PETSc, SLEPc, TAO, etc
I Trilinos
I Overture
I deal.ii

I Interface more complicated than procedure call
I Effectively defines embedded solver language

Key challenge: learning framework + build/link

Runtime frameworks

I Lots of trendy examples
I MapReduce / Hadoop
I Pregel, GraphLab, PowerGraph, Ligra, etc
I Spark

I Write code to match interface desired by framework
I Promise: “Code like this, we’ll make it go fast”

I Great when it works!
I Sometimes not as fast as you’d hope

Key challenge: map your problem to desired form

Scripting languages and PSEs

I Matlab, Octave, R, Python, Julia
I “High productivity” vs “high performance”?
I Not necessarily slow!

I Speed via extensions (Cython, MWrap, etc)
I Speed via Jit (Matlab, Julia, Python Numba)
I Speed via BLAS3 calls (all of the above)
I Often some parallel support as well

I Performance strategies transfer
I Model and understand data access
I Profile and tune

I Bottlenecks may not be where you expect

Key challenge: map your problem to fit language strengths

Domain specific languages

I Classic example: SQL
I PDE domain: finite element compilers

I Dolfin framework
I Sundance

I Embedded languages/specializers (PyCUDA, SEJITS)

Key challenge: great opportunities from limited scope

Simulation codes

I ANSYS, ABAQUS, LS-DYNA, OpenSEES, FEAP, COMSOL,
FLUENT, OpenFOAM, SPICE, Cadence, BioSPICE, ...

I Typical pattern
I Custom language (or preprocessor) for problem input
I Scripting language to describe analysis
I User-defined elements/modules in compiled language

I Great for some classes of problems
I Can often be tortured into covering other types!

Key challenge: limited scope

Thinking performance

I Algorithms matter
I But asymptotics isn’t everything

I Memory matters – start with data structures
I Compact data structures (in cache, avoid pointer-chasing)
I Careful choice of destructive / non-destructive updates

I Model, profile, tune, repeat

And now for something completely different.

Graph partitioning

Given:
I Graph G = (V ,E)

I Possibly weights (WV ,WE).
I Possibly coordinates for vertices (e.g. for meshes).

We want to partition G into k pieces such that
I Node weights are balanced across partitions.
I Weight of cut edges is minimized.

Important special case: k = 2.

Types of separators

I Edge separators: remove edges to partition
I Node separators: remove nodes (and adjacent edges)

Can go from one to the other (easiest if graph is degree-bounded).

Why partitioning?

I Physical network design (telephone layout, VLSI layout)
I Sparse matvec
I Preconditioners for PDE solvers
I Sparse Gaussian elimination
I Data clustering
I Image segmentation

Cost

How many partitionings are there? If n is even,(
n
n/2

)
=

n!

((n/2)!)2 ≈ 2n
√

2/(πn).

Finding the optimal one is NP-complete.

We need heuristics!

Partitioning with coordinates

I Lots of partitioning problems from “nice” meshes
I Planar meshes (maybe with regularity condition)
I k-ply meshes (works for d > 2)
I Nice enough =⇒ partition with O(n1−1/d) edge cuts

(Tarjan, Lipton; Miller, Teng, Thurston, Vavasis)
I Edges link nearby vertices

I Get useful information from vertex density
I Ignore edges (but can use them in later refinement)

Recursive coordinate bisection

Idea: Choose a cutting hyperplane parallel to a coordinate axis.
I Pro: Fast and simple
I Con: Not always great quality

Inertial bisection

Idea: Optimize cutting hyperplane based on vertex density

x̄ =
1
n

n∑
i=1

xi

r̄i = xi − x̄

I =
n∑

i=1

[
‖ri‖2I − ri rTi

]
Let (λn,n) be the minimal eigenpair for the inertia tensor I, and
choose the hyperplane through x̄ with normal n.

I Pro: Still simple, more flexible than coordinate planes
I Con: Still restricted to hyperplanes

Random circles (Gilbert, Miller, Teng)

I Stereographic projection
I Find centerpoint (any plane is an even partition)

In practice, use an approximation.
I Conformally map sphere, moving centerpoint to origin
I Choose great circle (at random)
I Undo stereographic projection
I Convert circle to separator

May choose best of several random great circles.

Coordinate-free methods

I Don’t always have natural coordinates
I Example: the web graph
I Can sometimes add coordinates (metric embedding)

I So use edge information for geometry!

Breadth-first search

I Pick a start vertex v0
I Might start from several different vertices

I Use BFS to label nodes by distance from v0
I We’ve seen this before – remember RCM?
I Could use a different order – minimize edge cuts locally

(Karypis, Kumar)

I Partition by distance from v0

Greedy refinement

Start with a partition V = A ∪ B and refine.
I Gain from swapping (a, b) is D(a) + D(b), where

D(a) =
∑
b′∈B

w(a, b′)−
∑

a′∈A,a′ 6=a

w(a, a′)

D(b) =
∑
a′∈A

w(b, a′)−
∑

b′∈B,b′ 6=b

w(b, b′)

I Purely greedy strategy:
I Choose swap with most gain
I Repeat until no positive gain

I Local minima are a problem.

Kernighan-Lin

In one sweep:

While no vertices marked
Choose (a, b) with greatest gain
Update D(v) for all unmarked v as if (a, b) were swapped
Mark a and b (but don’t swap)

Find j such that swaps 1, . . . , j yield maximal gain
Apply swaps 1, . . . , j

Usually converges in a few (2-6) sweeps. Each sweep is O(N3).
Can be improved to O(|E |) (Fiduccia, Mattheyses).

Further improvements (Karypis, Kumar): only consider vertices on
boundary, don’t complete full sweep.

Spectral partitioning

Label vertex i with xi = ±1. We want to minimize

edges cut =
1
4

∑
(i ,j)∈E

(xi − xj)
2

subject to the even partition requirement∑
i

xi = 0.

But this is NP hard, so we need a trick.

Spectral partitioning

Write

edges cut =
1
4

∑
(i ,j)∈E

(xi − xj)
2 =

1
4
‖Cx‖2 =

1
4
xTLx

where C is the incidence matrix and L = CTC is the graph
Laplacian:

Cij =

1, ej = (i , k)

−1, ej = (k , i)

0, otherwise,

Lij =

d(i), i = j

−1, i 6= j , (i , j) ∈ E ,

0, otherwise.

Note that Ce = 0 (so Le = 0), e = (1, 1, 1, . . . , 1)T .

Spectral partitioning

Now consider the relaxed problem with x ∈ Rn:

minimize xTLx s.t. xT e = 0 and xT x = 1.

Equivalent to finding the second-smallest eigenvalue λ2 and
corresponding eigenvector x , also called the Fiedler vector.
Partition according to sign of xi .

How to approximate x? Use a Krylov subspace method (Lanczos)!
Expensive, but gives high-quality partitions.

Multilevel ideas

Basic idea (same will work in other contexts):
I Coarsen
I Solve coarse problem
I Interpolate (and possibly refine)

May apply recursively.

Maximal matching

One idea for coarsening: maximal matchings
I Matching of G = (V ,E) is Em ⊂ E with no common vertices.
I Maximal if no more edges can be added and remain matching.
I Constructed by an obvious greedy algorithm.
I Maximal matchings are non-unique; some may be preferable to

others (e.g. choose heavy edges first).

Coarsening via maximal matching

2

1 1

1

2

I Collapse nodes connected in matching into coarse nodes
I Add all edge weights between connected coarse nodes

Software

All these use some flavor(s) of multilevel:
I METIS/ParMETIS (Kapyris)
I PARTY (U. Paderborn)
I Chaco (Sandia)
I Scotch (INRIA)
I Jostle (now commercialized)
I Zoltan (Sandia)

Is this it?

Consider partitioning for sparse matvec:
I Edge cuts 6= communication volume
I Haven’t looked at minimizing maximum communication

volume
I Looked at communication volume – what about latencies?

Some work beyond graph partitioning (e.g. hypergraph in Zoltan).

Is this it?

Additional work on:
I Partitioning power law graphs
I Covering sets with small overlaps

Also: Classes of graphs with no small cuts (expanders)

