
Load balancing

David Bindel

12 Nov 2015



Inefficiencies in parallel code

I Poor single processor performance
I Typically in the memory system
I Saw this in matrix multiply assignment

I Overhead for parallelism
I Thread creation, synchronization, communication
I Saw this in shallow water assignment

I Load imbalance
I Different amounts of work across processors
I Different speeds / available resources
I Insufficient parallel work
I All this can change over phases



Where does the time go?

I Load balance looks like high, uneven time at synchronization
I ... but so does ordinary overhead if synchronization expensive!
I And spin-locks may make synchronization look like useful work
I And ordinary time sharing can confuse things more
I Can get some help from profiling tools



Reminder: Graph partitioning

I Graph G = (V ,E ) with vertex and edge weights
I Try to evenly partition while minimizing edge cut (comm

volume)
I Optimal partitioning is NP complete – use heuristics

I Spectral
I Kernighan-Lin
I Multilevel

I Tradeoff quality vs speed
I Good software exists (e.g. METIS)



The limits of graph partitioning

What if
I We don’t know task costs?
I We don’t know the communication pattern?
I These things change over time?

May want dynamic load balancing.



Basic parameters

I Task costs
I Do all tasks have equal costs?
I When are costs known (statically, at creation, at completion)?

I Task dependencies
I Can tasks be run in any order?
I If not, when are dependencies known?

I Locality
I Should tasks be on the same processor to reduce

communication?
I When is this information known?



Task costs

I Easy: equal unit cost tasks
I Branch-free loops

I Harder: different, known times
I Example: general sparse matrix-vector multiply

I Hardest: task cost unknown until after execution
I Example: search



Dependencies

I Easy: dependency-free loop (Jacobi sweep)
I Harder: tasks have predictable structure (some DAG)
I Hardest: structure changes dynamically (search, sparse LU)



Locality/communication

I Easy: tasks don’t communicate except at start/end
(embarrassingly parallel)

I Harder: communication is in a predictable pattern (elliptic
PDE solver)

I Communication is unpredictable (discrete event simulation)



A spectrum of solutions

How much we can do depends on cost, dependency, locality
I Static scheduling

I Everything known in advance
I Can schedule offline (e.g. graph partitioning)
I Example: Shallow water solver

I Semi-static scheduling
I Everything known at start of step (or other determined point)
I Can use offline ideas (e.g. Kernighan-Lin refinement)
I Example: Particle-based methods

I Dynamic scheduling
I Don’t know what we’re doing until we’ve started
I Have to use online algorithms
I Example: most search problems



Search problems

I Different set of strategies from physics sims!
I Usually require dynamic load balance
I Example:

I Optimal VLSI layout
I Robot motion planning
I Game playing
I Speech processing
I Reconstructing phylogeny
I ...



Example: Tree search

I Tree unfolds dynamically during search
I May be common subproblems along different paths (graph)
I Graph may or may not be explicit in advance



Search algorithms

Generic search:

Put root in stack/queue
while stack/queue has work

remove node n from queue
if n satisfies goal, return
mark n as searched
add viable unsearched children of n to stack/queue
(Can branch-and-bound)

Variants: DFS (stack), BFS (queue), A∗ (priority queue), ...



Simple parallel search

I Static load balancing: each new task on an idle processor until
all have a subree

I Not very effective without work estimates for subtrees!
I How can we do better?



Centralized scheduling
Idea: obvious parallelization of standard search

I Shared data structure (stack, queue, etc) protected by locks
I Or might be a manager task

Teaser: What could go wrong with this parallel BFS?

Put root in queue
fork

obtain queue lock
while queue has work

remove node n from queue
release queue lock
process n, mark as searched
obtain queue lock
add viable unsearched children of n to queue

release queue lock
join



Centralized task queue

I Called self-scheduling when applied to loops
I Tasks might be range of loop indices
I Assume independent iterations
I Loop body has unpredictable time (or do it statically)

I Pro: dynamic, online scheduling
I Con: centralized, so doesn’t scale
I Con: high overhead if tasks are small



Variations on a theme

How to avoid overhead? Chunks! (Think OpenMP loops)
I Small chunks: good balance, large overhead
I Large chunks: poor balance, low overhead
I Variants:

I Fixed chunk size (requires good cost estimates)
I Guided self-scheduling (take dR/pe work, R = tasks

remaining)
I Tapering (estimate variance; smaller chunks for high variance)
I Weighted factoring (like GSS, but take heterogeneity into

account)



Beyond centralized task queue

Basic distributed task queue idea:
I Each processor works on part of a tree
I When done, get work from a peer
I Or if busy, push work to a peer
I Requires asynch communication

Also goes by work stealing, work crews...

Implemented in Cilk, X10, CUDA, ...



Picking a donor

Could use:
I Asynchronous round-robin
I Global round-robin (keep current donor pointer at proc 0)
I Randomized – optimal with high probability!



Diffusion-based balancing

I Problem with random polling: communication cost!
I But not all connections are equal
I Idea: prefer to poll more local neighbors

I Average out load with neighbors =⇒ diffusion!



Mixed parallelism

I Today: mostly coarse-grain task parallelism
I Other times: fine-grain data parallelism
I Why not do both?
I Switched parallelism: at some level switch from data to task


