Final thoughts

David Bindel

23 Nov 2015



Logistics

Reminder: My last lecture!

Dec 3 (or 5): GPU lecture
Dec 16: Project reports due
Dec 23: Fall 15 grade deadline



Project Report

Goal: understand performance!

» Do give a description of your problem.

» Do describe performance analysis, which might include
Serial tuning and reorganizations

Strong and weak scaling experiment (speedup plots!)
Profiling of communication and computation

Tuning of parallelism (communication, synchronization, etc)
Comparison to analytical models

Comparisons between alternate organizations

vV vy vy VvV VY

v

Do tell me how this work might continue given more time.
Don’t make me read a ton of code.
Don't ask for an extension. This is due 12/16.

v

v



Recap and Overview



Goals for Scientific Codes

Right enough, fast enough.



Recall: Goals for the Class (from Lecture 1)

v

Reason about code performance

» Many factors: hardware, software, algorithms
» Want simple, “good enough” models

Read/judge HPC literature
Apply model numerical HPC patterns

v

v

v

Tune existing codes for modern HW

v

Apply good software practices



Hardware ideas

These things matter:

v

ILP: Pipelining, concurrent execution, and vectorization

v

Memory heirarchy and the cost of cache misses

» Communication costs (latency and bandwidth)

v

Synchronization overheads



Model ideas

Essentially, all models are wrong, but some are useful.
— George E. P. Box

» Use simple performance models for guidance

» Fit the parameters to empirical experiment



Numerical ideas

... thinking about high-performance numerics often involves:

>

>

>

Tiling and blocking algorithms; building atop the BLAS

Ideas of sparsity and locality

Graph partitioning and communication / computation ratios
Information propagation, deferred communication, ghost cells
Big picture view of sparse and direct iterative solvers

Some multilevel ideas

And a few other numerical methods (FMM, MC, MD) and
associated programming patterns



Improving performance

» Zeroth steps

» Working code (and test cases) first

» Be smart about trading your time for CPU time!
» First steps

» Use good compilers (if you have access — Intel is good)
» Use flags intelligently (-03, maybe others)
> Use libraries someone else has tuned!

» Second steps

» Use a profiler
» Learn some timing routines (system-dependent)
» Find the bottleneck!

» Third steps

» Tune the data layout (and algorithms) for cache locality
» Put in context of computer architecture
» Now tune
» Maybe with some automation (Spiral, FLAME, ATLAS, OSKI)



Parallel environments

MPI

» Portable to many implementations
» Giant legacy code base
» Does keep evolving (e.g. RDMA support)

OpenMP

» Parallelize C, Fortran codes with simple changes
» ... but may need more invasive changes to go fast

Cilk Plus, Intel Thread Building Blocks, ...
» Threading alternatives to OpenMP
CUDA, OpenCL, etc
» Highly data-parallel kernels (e.g. for GPU)

v

v

v

v

v

GAS systems: Fortran co-arrays, UPC, Titanium, Chapel

» Shared-memory-like programs
» Explicitly acknowledge of different types of memory



Libraries and frameworks

» Dense LA: LAPACK and BLAS (ATLAS, Goto, Veclib, MKL,
AMD Performance Library)

» Sparse direct: Elemental, Pardiso (in MKL), UMFPACK (in
MATLAB), WSMP, SuperLU, TAUCS, DSCPACK, MUMPS,

» FFTs: FFTW

» Graph partitioning: METIS, ParMETIS, SCOTCH, Zoltan, ...

» Other; deal.ii (FEM), SUNDIALS (ODEs/DAEs), SLICOT
(control), Triangle (meshing), ...

» Frameworks: PETSc/Trilinos

» Gigantic, a pain to compile... but does a lot
» Good starting places for ideas, library bindings!

» Collections: Netlib (classic numerical software), ACTS
(reviews of parallel code)

» MATLAB, Anaconda Python distro, etc. add value in part by
selecting and pre-building interoperable libraries



Scripting

... because we don't want to spend all our lives debugging C

memory errors, it helps to make judicious use of other languages:
» Many options: Python, Ruby, Lua, Julia, R, ...

Wrappers help: SWIG, tolua, Boost/Python, Cython, etc.

Scripts are great for

Prototyping

Problem setup

High-level logic

User interfaces

Testing frameworks
Program generation tasks

v

v

vV vV vV vV VY VY Y

Worry about performance at the bottlenecks!

v



Development ideas

Read! Among other things:

» “Five recommended practices for computational scientists who
write software” (Kelley, Hook, and Sanders in Computing in
Science and Engineering, 9/09)

» “Barely sufficient software engineering: 10 practices to improve
your CSE software” (Heroux and Willenbring)

» “15 years of reproducible research in computational harmonic
analysis” (Donoho et al)

» Daniel Lemire has an interesting rebuttal.
» Best Practices for Scientific Computing (Wilson et al)

» Follow-up: Good Enough Practices for Scientific Computing


http://www.daniel-lemire.com/blog/archives/2010/04/20/the-mythical-reproducibility-of-science/
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
http://swcarpentry.github.io/good-enough-practices-in-scientific-computing/

Looking back, looking forward



Today: Hardware

» My phone is a multicore machine

» Shared memory programming hasn't disappeared

» 128 processors + a terabyte of memory = 1 beefy box
» Accelerators are everywhere

» Caches keep getting more important

» A modest class cluster has nearly 1000 processors

» Getting a significant fraction of peak is hard

» Statistical computations (machine learning) burn lots of cycles



Today

v

v

v

v

- Software

Lots is still C/C++/Fortran

» These are evolving languages!
» Most new languages don't go far...

Increased emphasis on high-level (e.g. Python)

» High performance in specific domains

» Domain-specific specializations

» JIT and on-the-fly optimization are commonplace
High productivity matters along with high performances
We still suffer some “accidental complexities”

» Think struct-of-arrays vs array-of-structs transformation



Today: Applications

» Still lots of “traditional” HPC computations
» Large-scale optimization
» PDE solves
» Engineering simulation
» Graph applications?
» Different properties from PDEs
» Similar applications
» Also lots of stats / ML computations
» Often more opportunities for parallelism
» Often more data, less accuracy — 1/O becomes the key
» Lots of work on frameworks for these problems
» Closer to traditional HPC over time...
» “Big data” and DB ideas

» Lots of relatively modest computations over lots of data
» Still rather different community from lots of HPC



Where we're heading

“If you were plowing a field, which would you rather use:
Two strong oxen or 1024 chickens?”
— Seymour Cray

» Done with scaling up frequency, pipeline length
» Current hardware: multicore and manycore (GPU and Phi)

» Often specialized parallelism — go, chickens!
» We're back to not-so-short vectors

» Where current hardware lives

» Often in clusters, maybe "in the cloud”
» More embedded computing, too!

» Straight line prediction: double core counts every 18 months
» Real question is still how we'll use these cores!

» Ever-worse issues: deep memory, communication costs



Where we're heading

» Many dimensions of “performance”

1. Time to execute a program or routine

2. Energy to execute a program or routine (esp. on battery)
3. Total cost of ownership / computation?

4. Time to write and debug programs

» Scientific computing has been driven by speed

» Other measures of performance also have influence



Where we're heading

» Top 500 has stayed much the same for several years!

» DOE still says “exascale” pretty often
» And nobody knows how to use it

» Next Xeon Phi: independent board (vs co-processor)
» How long with the co-processors?

» Cloud vendors still care more about high throughput, but...
» Accelerated cloud instances a viable path to some HPC

» Languages advance slowly, but

» New LLVM Fortran is exciting

» Multidimensional array functionality being considered by
ISO/C++ standard committee

» Other goodies planned for C++17 (better atomics)



Next steps

» Next offering: likely not S18 — S197 S207

» Between now and then: how to keep the ball rolling?
» Keep totient a useful educational resource?
» Continue building relevant skills?

» One idea: two (largely student-guided) activities

» Software carpentry workshops (per semester)
» Scientific software meetup (biweekly)
» Drop me a line if you're interested in either...



Given enough time

» Serious parallel programming in Cilk++, UPC, etc
» Parallel 1/0 issues

» Code generation and specialization

» Visualization

» “Big data” processing and frameworks

» Kokkos, TBB, other frameworks

» Reproducibility

» Multigrid

» Tree codes

» Particle codes



Your Turn



