
Final thoughts

David Bindel

23 Nov 2015



Logistics

Reminder: My last lecture!
Dec 3 (or 5): GPU lecture

Dec 16: Project reports due
Dec 23: Fall 15 grade deadline



Project Report

Goal: understand performance!
I Do give a description of your problem.
I Do describe performance analysis, which might include

I Serial tuning and reorganizations
I Strong and weak scaling experiment (speedup plots!)
I Profiling of communication and computation
I Tuning of parallelism (communication, synchronization, etc)
I Comparison to analytical models
I Comparisons between alternate organizations

I Do tell me how this work might continue given more time.
I Don’t make me read a ton of code.
I Don’t ask for an extension. This is due 12/16.



Recap and Overview



Goals for Scientific Codes

Right enough, fast enough.



Recall: Goals for the Class (from Lecture 1)

I Reason about code performance
I Many factors: hardware, software, algorithms
I Want simple, “good enough” models

I Read/judge HPC literature
I Apply model numerical HPC patterns
I Tune existing codes for modern HW
I Apply good software practices



Hardware ideas

These things matter:
I ILP: Pipelining, concurrent execution, and vectorization
I Memory heirarchy and the cost of cache misses
I Communication costs (latency and bandwidth)
I Synchronization overheads



Model ideas

Essentially, all models are wrong, but some are useful.
– George E. P. Box

I Use simple performance models for guidance
I Fit the parameters to empirical experiment



Numerical ideas

... thinking about high-performance numerics often involves:
I Tiling and blocking algorithms; building atop the BLAS
I Ideas of sparsity and locality
I Graph partitioning and communication / computation ratios
I Information propagation, deferred communication, ghost cells
I Big picture view of sparse and direct iterative solvers
I Some multilevel ideas
I And a few other numerical methods (FMM, MC, MD) and

associated programming patterns



Improving performance

I Zeroth steps
I Working code (and test cases) first
I Be smart about trading your time for CPU time!

I First steps
I Use good compilers (if you have access – Intel is good)
I Use flags intelligently (-O3, maybe others)
I Use libraries someone else has tuned!

I Second steps
I Use a profiler
I Learn some timing routines (system-dependent)
I Find the bottleneck!

I Third steps
I Tune the data layout (and algorithms) for cache locality
I Put in context of computer architecture
I Now tune

I Maybe with some automation (Spiral, FLAME, ATLAS, OSKI)



Parallel environments

I MPI
I Portable to many implementations
I Giant legacy code base
I Does keep evolving (e.g. RDMA support)

I OpenMP
I Parallelize C, Fortran codes with simple changes
I ... but may need more invasive changes to go fast

I Cilk Plus, Intel Thread Building Blocks, ...
I Threading alternatives to OpenMP

I CUDA, OpenCL, etc
I Highly data-parallel kernels (e.g. for GPU)

I GAS systems: Fortran co-arrays, UPC, Titanium, Chapel
I Shared-memory-like programs
I Explicitly acknowledge of different types of memory



Libraries and frameworks
I Dense LA: LAPACK and BLAS (ATLAS, Goto, Veclib, MKL,

AMD Performance Library)
I Sparse direct: Elemental, Pardiso (in MKL), UMFPACK (in

MATLAB), WSMP, SuperLU, TAUCS, DSCPACK, MUMPS,
...

I FFTs: FFTW
I Graph partitioning: METIS, ParMETIS, SCOTCH, Zoltan, ...
I Other; deal.ii (FEM), SUNDIALS (ODEs/DAEs), SLICOT

(control), Triangle (meshing), ...
I Frameworks: PETSc/Trilinos

I Gigantic, a pain to compile... but does a lot
I Good starting places for ideas, library bindings!

I Collections: Netlib (classic numerical software), ACTS
(reviews of parallel code)

I MATLAB, Anaconda Python distro, etc. add value in part by
selecting and pre-building interoperable libraries



Scripting

... because we don’t want to spend all our lives debugging C
memory errors, it helps to make judicious use of other languages:

I Many options: Python, Ruby, Lua, Julia, R, ...
I Wrappers help: SWIG, tolua, Boost/Python, Cython, etc.
I Scripts are great for

I Prototyping
I Problem setup
I High-level logic
I User interfaces
I Testing frameworks
I Program generation tasks
I ...

I Worry about performance at the bottlenecks!



Development ideas

Read! Among other things:
I “Five recommended practices for computational scientists who

write software” (Kelley, Hook, and Sanders in Computing in
Science and Engineering, 9/09)

I “Barely sufficient software engineering: 10 practices to improve
your CSE software” (Heroux and Willenbring)

I “15 years of reproducible research in computational harmonic
analysis” (Donoho et al)

I Daniel Lemire has an interesting rebuttal.

I Best Practices for Scientific Computing (Wilson et al)
I Follow-up: Good Enough Practices for Scientific Computing

http://www.daniel-lemire.com/blog/archives/2010/04/20/the-mythical-reproducibility-of-science/
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
http://swcarpentry.github.io/good-enough-practices-in-scientific-computing/


Looking back, looking forward



Today: Hardware

I My phone is a multicore machine
I Shared memory programming hasn’t disappeared
I 128 processors + a terabyte of memory = 1 beefy box
I Accelerators are everywhere
I Caches keep getting more important
I A modest class cluster has nearly 1000 processors
I Getting a significant fraction of peak is hard
I Statistical computations (machine learning) burn lots of cycles



Today: Software

I Lots is still C/C++/Fortran
I These are evolving languages!
I Most new languages don’t go far...

I Increased emphasis on high-level (e.g. Python)
I High performance in specific domains
I Domain-specific specializations
I JIT and on-the-fly optimization are commonplace

I High productivity matters along with high performances
I We still suffer some “accidental complexities”

I Think struct-of-arrays vs array-of-structs transformation



Today: Applications

I Still lots of “traditional” HPC computations
I Large-scale optimization
I PDE solves
I Engineering simulation

I Graph applications?
I Different properties from PDEs
I Similar applications

I Also lots of stats / ML computations
I Often more opportunities for parallelism
I Often more data, less accuracy – I/O becomes the key
I Lots of work on frameworks for these problems
I Closer to traditional HPC over time...

I “Big data” and DB ideas
I Lots of relatively modest computations over lots of data
I Still rather different community from lots of HPC



Where we’re heading

“If you were plowing a field, which would you rather use:
Two strong oxen or 1024 chickens?”

– Seymour Cray

I Done with scaling up frequency, pipeline length
I Current hardware: multicore and manycore (GPU and Phi)

I Often specialized parallelism — go, chickens!
I We’re back to not-so-short vectors

I Where current hardware lives
I Often in clusters, maybe “in the cloud”
I More embedded computing, too!

I Straight line prediction: double core counts every 18 months
I Real question is still how we’ll use these cores!
I Ever-worse issues: deep memory, communication costs



Where we’re heading

I Many dimensions of “performance”
1. Time to execute a program or routine
2. Energy to execute a program or routine (esp. on battery)
3. Total cost of ownership / computation?
4. Time to write and debug programs

I Scientific computing has been driven by speed
I Other measures of performance also have influence



Where we’re heading

I Top 500 has stayed much the same for several years!
I DOE still says “exascale” pretty often

I And nobody knows how to use it
I Next Xeon Phi: independent board (vs co-processor)

I How long with the co-processors?
I Cloud vendors still care more about high throughput, but...

I Accelerated cloud instances a viable path to some HPC
I Languages advance slowly, but

I New LLVM Fortran is exciting
I Multidimensional array functionality being considered by

ISO/C++ standard committee
I Other goodies planned for C++17 (better atomics)



Next steps

I Next offering: likely not S18 – S19? S20?
I Between now and then: how to keep the ball rolling?

I Keep totient a useful educational resource?
I Continue building relevant skills?

I One idea: two (largely student-guided) activities
I Software carpentry workshops (per semester)
I Scientific software meetup (biweekly)
I Drop me a line if you’re interested in either...



Given enough time

I Serious parallel programming in Cilk++, UPC, etc
I Parallel I/O issues
I Code generation and specialization
I Visualization
I “Big data” processing and frameworks
I Kokkos, TBB, other frameworks
I Reproducibility
I Multigrid
I Tree codes
I Particle codes



Your Turn


